9 resultados para Descontaminação dos solos

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Environmental liabilities from accidents in the retail petroleum industry, especially in urban areas, have represented a serious problem whose impact reaches the underground, people's health and even economic losses with the remediation process. In U.S.A. are estimated hundreds of billions of dollars invested in soil remediation processes. The results of the reports and investigative reports of liabilities in fuel stations distributed in the urban area of Natal-RN were used to estimate the local scenario of contamination. This database has been possible to determine the main contaminants (BTEX, PAHs, TOC), affected neighborhoods and types of potentially more impacted soils. Experiments were carried out in order to reverse contamination of this scenario, where the soil type was a factor in the planning, because it influences directly on the effectiveness of remediation techniques studied: Oxidation by hydrogen peroxide and oxidation by sodium persulphate. These oxidants are activated forming free radicals (HO•-, SO4 •-, HO2 • , O2 •-, S2O8 -2, etc) responsible for to mineralize the hydrocarbons and other organic compounds (releasing O2 e CO2). In the activation process, the ferrous ions (II) and ferric (III) were studied as well as hydrogen peroxide activation technique with sodium persulfate, the latter being presented the best efficiency among all the study, when activated with Fe+3. In addition to defining the most efficient technique, the aim of this study was to evaluate the influence of different soils among oxidative techniques, characterizing the effect of the concentration of these oxidants and also the concentration of the catalysts. Exists in most scenarios evaluated the presence of intrinsic total iron soil matrix. The so-called latosols present microaggregates reddish indicating the presence of these reactive species like iron and clayey aspect. The kinetic study was conducted by experimental design and monitoring of the percentage of total carbon (SSM-5000A) in the solid and liquid phases, knowing that 82.4% of the diesel molecule is carbon. Yet organic carbon and pH of liquid samples were analyzed for technical, characterizing the influence of soil type and its operating condition. The Fenton-like technique H2O2 e Fe+2 presented satisfactory oxidation, including sandy soil, but well below the best result. The sodium persulphate only activated with temperature, even in the most favorable soil, did not provide good efficiency. The best technique in the study had the concentration profile with 2,2x10- 1mol.L-1 of Na2S2O8 activated with 6,53x10-1mol.L-1 of H2O2 and 2,5x10-2 Fe3+mol.L-1 which reduced in less than a day 96 contamination in red soil, initially with 66,667 mg of diesel per kg of clean soil

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electrochemical technologies have been proposed as a promising alternative for the treatment of effluents and contaminated soils. Therefore, the objective of this work was to study the treatment of contaminated soils and wastewaters using electrochemical technologies. Thus, the study regarding the scale-up of the electrochemical system with continuous flow treatment of wastewater of the petrochemical industry was investigated using platinum electrodes supported on titanium (Ti / Pt), and boron-doped diamond (BDD). The results clearly showed that under the operating conditions studied and electrocatalytic materials employed, the better removal efficiency was achieved with BDD electrode reducing the chemical oxygen demand (COD) from 2746 mg L-1 to 200 mg L-1 in 5 h consuming 56.2 kWh m-3 . The decontamination of soils and effluents by petrochemical products was evaluated by studying the effects of electrokinetic remediation for removal of total petroleum hydrocarbons (HTP) from contaminated soil with diesel. The efficiency of this process was dependent on the electrolyte used Na2SO4 (96.46%), citric acid (81.36%) and NaOH (68.03%) for 15 days. Furthermore, the effluent after treatment of the soil was treated by electrochemical oxidation, achieving a good elimination of the organic polluting load dissolved. Depending on the physical behavior of wastewater contaminated with oil (emulsified state); atrazine emulsified effluents were investigated. The main characteristics of the effluent produced during the washing of contaminated soil were studied, being dependent on the surfactant dosage used; which determined its electrolytic treatment with BDD. The electrochemical oxidation of emulsified effluent of atrazine was efficient, but the key to the treatment is reducing the size of micelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The decontamination of the materials has been subject of some studies. One of the factors that it increases the pollution is the lack of responsibility in the discarding of toxic trash, as for example the presence of PCB (Polychlorinated Biphenyls) in the environment. In the Brazilian regulations, the material contaminated with PCB in concentrations higher than 50 ppm must be stored in special places or destroyed, usually by incineration in plasma furnace with dual steps. Due to high cost of the procedure, new methodologies of PCBs removal has been studied. The objective of this study was to develop an experimental methodology and analytical methodology for quantification of removal of PCBs through out the processes of extractions using supercritical fluid and Soxhlet method, also technical efficiency of the two processes of extraction, in the treatment of contaminated materials with PCBs. The materials studied were soils and wood, both were simulated contamination with concentration of 6.000, 33.000 and 60.000 mg of PCB/ kg of materials. Soxhlet extractions were performed using 100 ml of hexane, and temperature of 180 ºC. Extractions by fluid supercritical were performed at conditions of 200 bar, 70°C, and supercritical CO2 flow-rate of 3 g/min for 1-3 hours. The extracts obtained were quantified using Gas chromatography-mass spectrometry (GC/MS). The conventional extractions were made according to factorial experimental planning technique 22, with aim of study the influence of two variables of process extraction for the Soxhlet method: contaminant concentration and extraction time for obtain a maximum removal of PCB in the materials. The extractions for Soxhlet method were efficient for extraction of PCBs in soil and wood in both solvent studied (hexane and ethanol). In the experimental extraction in soils, the better efficient of removal of PCBs using ethanol as solvent was 81.3% than 95% for the extraction using hexane as solvent, for equal time of extraction. The results of the extraction with wood showed statistically it that there is not difference between the extractions in both solvent studied. The supercritical fluid extraction in the conditions studied showed better efficiency in the extraction of PCBs in the wood matrix than in soil, for two hours extractions the obtain percentual of 43.9 ± 0.5 % for the total of PCBs extracted in the soils against 95.1 ± 0,5% for the total of PCBs extracted in the wood. The results demonstrated that the extractions were satisfactory for both technical studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil contamination with petroleum is one of the major concern of industries operating in the field and also of environmental agencies. The petroleum consists mainly of alkanes and aromatic hydrocarbons. The most common examples of hydrocarbons polyaromatic are: naphthalene, anthracene, phenanthrene, benzopyrene and their various isomers. These substances cause adverse effects on human and the environment. Thus, the main objective of this work is to study the advanced oxidation process using the oxidant potassium permanganate (KMnO4) for remediation of soils contaminated with two polyaromatic hydrocarbons (PAHs): anthracene and phenanthrene. This study was conducted at bench scale, where the first stage was at batch experiment, using the variables: the time and oxidant dosage in the soil. The second stage was the remediation conducted in continous by a fix column, to this stage, the only variable was remediation time. The concentration of oxidant in this stage was based on the best result obtained in the tests at batch, 2,464 mg / L. The results of degradation these contaminants were satisfactory, at the following dosages and time: (a) 5g of oxidant per kg soil for 48 hours, it was obtained residual contaminants 28 mg phenanthrene and 1.25 mg anthracene per kg of soil and (b) for 7g of oxidant per kg soil in 48 hours remaining 24 mg phenanthrene and anthracene 0.77 mg per kg soil, and therefore below the intervention limit residential and industrial proposed by the State Company of Environmental Sao Paulo (CETESB)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The underground reservoirs of fuel retailing system represent an environmental threat, because once in bad conservation, these tanks allow fuel leakage and infiltration. For soil contaminated with fuel, such as diesel oil, the present study introduces the microemulsion systems used by the method of washing. In tests carried out in column with a sample of sandy soil artificially contaminated and previously characterized as to its void level to porosity, to permeability which is an important parameter concerning the study of the method of washing. While microemulsions were characterized for their viscosity and wettability, a variation of active matter was also done departing from the original formulation. The hydraulic diffusivity of the microemulsion was studied so as the injection of such fluid in a soil with sandy characteristics. The results of the extractions revealed the excellent performance of these systems which get to remove around 95% of diesel fuel. This proves the efficiency of the microemulsion in the process of removal of diesel fuel from the soil with the advantage of being a system easily obtainable and less aggressive to the environment when compared to organic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some microorganisms from virgin ecosystems are able to use petroleum it as source of carbon and energy. The knowledge of microbial biodiversity can help to reveal new metabolic systems for utilization alkanes with biotechnological importance. The aim of this study is: i) Accomplish an in silico study of the AlkB protein aimed to understand the probable mechanism involved on selectivity of alkanes in Gram positive and Gram negative bactéria. ii) prospect and analyze the response of the microbial alkanotrophics communities in soil and mangrove sediments of BPP RN and soil of Atlantic forest in the Horto Dois Irmãos Reserve area/PE using the molecular biomarker, gene alkB; with the PCR and PCR-DGGE approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combating pollution of soils is a challenge that has concerned researchers from different areas and motivated the search for technologies that aim the recovery of degraded soils. Literature shows numerous processes that have been proposed with the intent of remediating soils contaminated by oils and other by-products of the oil industry, considering that the processes available have, generally, high operating costs, this work proposes a costeffective alternative to the treatment of Diesel-contaminated soils. The washing solutions were prepared using water as aqueous phase, the saponified coconut oil (OCS) as surfactant and n-butanol as co-surfactant. In this study, the soil was characterized by physical and chemical analyses. The study of diesel desorption from the soil was held in bath, using hexane and washing solutions, which had 10 and 20 wt.% active matter (AM - co-surfactant/surfactants) respectively. The study of the influence of active matter concentration and temperature in bath agitated used an experimental planning. The experiment also developed a system of percolation in bed to wash the soil and studied the influence of the concentration of active substance and volume of washing solution using an experimental planning. The optimal times to achieve hexane extraction were 30 and 180 min, while the best results using a 10% AM was 60 min and using a 20% AM was 120 min. The results of the experimental planning on bath showed that the maximum diesel removal was obtained when at a 20 wt.% of AM and under 50 °C, removing 99.92% of the oil. As for experiments in the system of percolation soil bed, the maximum diesel removal was high when the volume of the washing solution was of 5 L and the concentration of 20% AM. This experiment concluded that the concentration of AM and the temperature were vital to bath experiments for diesel removal, while in the system of percolation soil bed only concentration of AM influenced the soil remediation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil contamination by pesticides is an environmental problem that needs to be monitored and avoided. However, the lack of fast, accurate and low cost analytical methods for discovering residual pesticide in complex matrices, such as soil, is a problem still unresolved. This problem needs to be solved before we are able to assess the quality of environmental samples. The intensive use of pesticides has increased since the 60s, because the dependence of their use, causing biological imbalances and promoting resistance and recurrence of high populations of pests and pathogens (upwelling). This has contributed to the appearance of new pests that were previously under natural control. To develop analytical methods that are able to quantify residues pesticide in complex environment. It is still a challenge for many laboratories. The integration of two analytical methods one ecotoxicological and another chemical demonstrates the potential for environmental analysis of methamidophos. The aim of this study was to evaluate an ecotoxicological method as "screening" analytical methamidophos in the soil and perform analytical confirmation in the samples of the concentration of the analyte by chemical method LC-MS/MS In this work we tested two soils: a clayey and sandy, both in contact with the kinetic methamidophos model followed pseudo-second order. The clay soil showed higher absorption of methamidophos and followed the Freundlich model, while the sandy, the Langmuir model. The chemical method was validated LC-MS/MS satisfactory, showing all parameters of linearity, range, precision, accuracy, and sensitivity adequate. In chronic ecotoxicological tests with C. dubia, the NOEC was 4.93 and 3.24 for ng L-1 of methamidophos to elutriate assays of sandy and clay soils, respectively. The method for ecotoxicological levels was more sensitive than LC-MS/MS detection of methamidophos, loamy and sandy soils. However, decreasing the concentration of the standard for analytical methamidophos and adjusting for the validation conditions chemical acquires a limit of quantification (LOQ) in ng L-1, consistent with the provisions of ecotoxicological test. The methods described should be used as an analytical tool for methamidophos in soil, and the ecotoxicological analysis can be used as a "screening" and LC-MS/MS as confirmatory analysis of the analyte molecule, confirming the objectives of this work

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the potentially polluting economic activities that compromise the quality of soil and groundwater stations are fuel dealers. Leakage of oil derived fuels in underground tanks or activities improperly with these pollutants can contaminate large areas, causing serious environmental and toxicological problems. The number of gas stations grew haphazardly, without any kind of control, thus the environmental impacts generated by these enterprises grew causing pollution of soil and groundwater. Surfactants using various techniques have been proposed to remedy this kind of contamination. This study presents innovation as the application of different systems containing surfactant in the vapor phase and compares their diesel removal efficiencies of soil containing this contaminant. For this, a system that contains seven injection wells the following vaporized solutions: water, surfactant solution, microemulsion and nanoemulsion, The surfactants used were saponified coconut oil (OCS), in aqueous solution and an ethoxylated alcohol UNTL-90: aqueous solution , and nanoemulsion and microemulsion systems. Among the systems investigated, the nanoemulsion showed the highest efficiency, achieving 88% removal of residual phase diesel, the most ecologically and technically feasible by a system with lower content of active matter